首页> 外文OA文献 >Lyapunov-based Stochastic Nonlinear Model Predictive Control: Shaping the State Probability Density Functions
【2h】

Lyapunov-based Stochastic Nonlinear Model Predictive Control: Shaping the State Probability Density Functions

机译:基于Lyapunov的随机非线性模型预测控制:整形   状态概率密度函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic uncertainties in complex dynamical systems lead to variability ofsystem states, which can in turn degrade the closed-loop performance. Thispaper presents a stochastic model predictive control approach for a class ofnonlinear systems with unbounded stochastic uncertainties. The control approachaims to shape probability density function of the stochastic states, whilesatisfying input and joint state chance constraints. Closed-loop stability isensured by designing a stability constraint in terms of a stochastic controlLyapunov function, which explicitly characterizes stability in a probabilisticsense. The Fokker-Planck equation is used for describing the dynamic evolutionof the states' probability density functions. Complete characterization ofprobability density functions using the Fokker-Planck equation allows forshaping the states' density functions as well as direct computation of jointstate chance constraints. The closed-loop performance of the stochastic controlapproach is demonstrated using a continuous stirred-tank reactor.
机译:复杂动力系统中的随机不确定性会导致系统状态发生变化,进而降低闭环性能。本文提出了一类具有无限随机不确定性的非线性系统的随机模型预测控制方法。该控制方法旨在塑造随机状态的概率密度函数,同时满足输入和联合状态机会约束。通过根据随机controlLyapunov函数设计稳定性约束,可以确保闭环稳定性,该函数明确地描述了概率感中的稳定性。福克-普朗克方程用于描述状态概率密度函数的动态演化。使用Fokker-Planck方程完整地描述概率密度函数,可以对状态的密度函数进行整形,也可以直接计算联合机会约束。使用连续搅拌釜式反应器证明了随机控制方法的闭环性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号